
Let, for example, the vortices of the odd pairs move initially along the x axis. It 
is easy to show that in this case C < C I for any value of $. If the disturbance is such 
that vortices of odd pairs move along the y axis only, then C > C I irrespective of the value 
of e, i.e., purely longitudinal disturbances give rise to the formation of cells in the street, 
while purely transverse disturbances separate the starting street into two streets~ 
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A METHOD FOR THE SOLUTION OF NONSTATIONARY PROBLEMS FOR 

A LAYER OF LIQUID WITH MIXED BOUNDARY CONDITIONS 

A. A. Zolotarev and L. I. Zolotarev UDC 532.593 

In this paper we develop a method for the solution of nonstationary problems with mixed 
boundary conditions for a layer of heavy liquid. In contrast to well-known analytical- 
numerical approaches (see [i, 2]), the method we propose makes it possible, being based 
on a factorization method, to carry out an analytical study of the process of excitation and 
the establishment of waves. 

By way of illustrating, we consider the problem of generating excitations by means of a 
set of external pressures applied to the upper boundary of a layer of liquid partially 
covered by an eleastic plate. We model a nonstationary processinvoiving the interaction 
of waves, excited through baric formations, with a limited ice field. 

Mathematically stated, our problem has the form 

av/at = -- p~* VP,~ -- ~ < z,: y < ~, -- H~< z ~ 0, div = 0; 

In:,: 
z=o  p , = q +  p,g + to,; w =  

/ l  = M a  = M ,  = 0,; x ~ OQ~ x = {x,  y}; .  

n aoV'+po  r- Iq(,,;t),. 
ot - i '  q = LO,~ x ~ D~ ' 

z = - - H , ,  w = O ;  

( i )  

(2) 

(3) 

(4) 

Here {x, y, z} is a rectangular Cartesian coordinate system with origin on the unperturbed 
free surface of the liquid; the z axis is directed vertically upwards; t is the time; p, is 
the dynamic component of the total pressure p in the liquid; v = {u, v, w} is the velocity 
vector; p, and H are the density and thickness of the layer of liquid; ~ is the elevation 
of the free surface, coinclding in the domain ~ occupied by the plate with its vertical 
displacement. R, Mn, and M r are the intersecting force, the bending moment, and the torque 
on the end of the plate ~; do, P0, and h are the stiffness, the density, and the thickness 
of the plate; q(x, t) is the external perturbing pressure, specified in the domain D = Dz U 
D2, acting on the free surface of the liquid in the domain Dz and on the plate in D2; g is 
the gravitational acceleration. 

We introduce dimensionless variables, identifying them with the subscript i: 
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{x,~ z,; ;}  = H{x,,~ z~, ;~}, v = o n ,  

do = pgH~dx, Po = Hh-*p*Px- 

( 5 )  

Since throughout the sequel only dimensionless variables are employed, we shall omit this 
subscript henceforth. 

Taking the Laplace transform with respect to t and the Fourier transform with respect 
to x, we reduce the problem (1)-(4) to the integral equation 

2 

PL (~, S) k (x - -  ~, s) -- %b (x, s) :b ~ jtj (x, s), x ~ ~ ,  re s t> s* > 0,: (6 )  
r oo 

{PL (x, S), qr~ (x, S)} -- S {p (x, t), q (x,~ t)} e'-'tdt,: 
0 

/j (x, s) = J" qL (x, s) k~ (x ~, s) d~,~ 
D~ 

i i {K (a, s), Kj  ( a,  s)} e -i{a'x) dot~ {k (x, s), kj (x, s)} = ~ . . . .  
~oo . , '  

a f { a .  a~}, a = l a l ,  x f { z ,  tt}, 

- I  ~ [ 8  ~ "I- .KI( (Z,  8) ~--- - -  ~ ( = )  [8~  "3t- ~ l (~ f , ) ]  ,: K2(G~ , 8) p--1 ~02 (G~)]--I 

where r s) is the Laplace transform of the general solution of the equation H~ = O. 
In this we understand that if ~ is an unbounded domain, then r s) will be the solution 
which satisfies radiation conditions for the waves at infinity. In Eq. (6) the quantity s* 
is the abscissa of convergence of the Laplace transform. 

If the plate occupies the halfplane (~: x > O) and if the wave picture is identical at 
an arbitrary cross-section y = const (the two-dimensional case), it follows that in the 
formula (6) the vectors x and ~ should be replaced by the scalar variables x and ~. In 
this regard, we write the function r s) in the form 

{C~(s)e - ~  + C, (s)d ~, z~>O,, 
~ ( x ,  s) - -  O, z < O ,  

C~(s) = (4dX')-~[(l ' e),J+(Z, s) - -  ~+(iX,. s)],: 
C~(s) = ( 4d~ ) - q~+(z ,  s) § (i - -  ~)a~(i~, s)], 

z+(a~s)  = P+(~; s) - q~(~, s), 

{P+ (=, s). Q~ (~, s)} = ~ {P~ (z, s), qL (x, s)} e~ 
Q, 

~ ,  (s) = ( - -  ps ~ d-*) ~/4,: 0 ~< arg ~ (s) < 0,5 ~. 

(7) 

Here the coefficients C I and C 2 are determined by requiring the solutionfor the plate to 
satisfy the boundary conditions (3) on 8R(x = O, 82~/3x 2 = 3s~/3x3 = 0). 

By extending Eq. (6) into the region outside of ~ (on the negative semiaxis x < O) by 
means of the function r s) and applying a Fourier transform with respect to the variable 
x, we reduce the problem to the equivalent functional equation 

~ (8) 
P+ (m s)K (a,: s) + O - ( m  s) = ~+ (a, s) + .~ Qs(a, s)Ki(a, s)t 

3=1 

510 



c z ~  E. res>~s*>0, Q~(a, s) ~q~(x ,  s)ei~dx~ Dz: x ~ - ( - -  0%, 01,: 
Dj 

D~: x ~ [0, ~),, 
0 

We now investigate the singularities (zeros and poles) of the functions K(a, s), Kj(a, 
s). The equation s 2 + K~(a) = 0 (j = i, 2) has for s = -im(-~ < ~ < ~) the two real roots 

3 
(see [3, 4]) a = !zj(-im) and a denumerable set of complex roots = =___iN], m(,i~), m = 1,2,3 ..... 

(for j = i, they are imaginary). The equation s 2 + K=(a) = '0 is satisfied by the two real 

roots u = +%(-i~) and the two imaginary roots ~ = !il(-i~), where X(s) is given in the 
relations (7). 

If re s > 0, the singular points i, zj are shifted from the real axis into the complex 
plane. In this connection, the choice of sign for the root in <j(~), coinciding with the 
sign of the variable ~ when its values are real, stipulate the fixing of the roots a = l(s), 

= zj(s) in the upper halfplane for a. The remaining singularities are complex and do not 
appear on the real axis. 

Thus the functional equation (8) has, for the functions appearing in it, a common strip 
E of regularity, which contains the whole real axis for a, i.e., 

E: --oo < r e  a < o o ,  ?_ < i r a  = < ? §  ?_ < 0  < 7 + .  

Throughout the relations (8) and in what follows, the subscripts + or - indicate regu- 
larity of the function with respect to the variable ~ in the upper (im ~ > y ) and lower 
(im ~ < y+) halfplanes. 

Factorization (see [5, 6]) of Eq. (8) enables us to represent the solution in integral 
form. Thus we find the following for the pressure p under the plate and the displacement 

of the upper boundary of the layer of liquid: 

p (x, t) = ~ e-i=~ [O~.(a, s) + G~. (a, s) K+ ~ (a, s)] e~tds&z, x >t 0; (9 )  

i 6+i~ ~(x, t )  - - ~ t  e -iux Z (cz, s) estdsd(x, - -  ~ < x < c~,. 
4~g - ~  6 -ice 

K ( ~ ,  s) = K+ (ct, s ) K _ ( a ,  s)~ 

Z (cr s) = K z (a, s) Oi (ct, s)" + G+ (cq s) K+ 1 (% s) , 6 i> s* > O. 

In the expressions (9) and (i0) the function G+(a, s) has the form 

2 

G§ (~, ~) = ~ r+ ~ ~=~ ~ q~ (~' ~) K~ (~, ~) K -~ (~,. s) Z (~, ~, s) d~,: 

Jr" 4kaA " (s) d (~,-}- i~,) ,K+ (~, s) q" (~ q- s K+ (~, s) .'~ 

(t - -  i) K +  (D., s) i K +  (~, s) i (~ -q- ~) (~ - -  ~ ) - 1  (~ __ ~L)'I hz(Ls)= ~-~ .L~-i~ + 
K+ (~, s) 8~d . 

h~ (~, S) = K+ (iZ, s) (1 --  i) K+ (Z, s) (~ + ~) ( ~ .  ~) -z (~ _ ~) -~  
-- ~-" ~ + ~ -  i~, K+ (i~,, s) 8 ~ d  

A (s) = K+ (L, s)K+ (iL,. s) + [K+ (~, s)K+ (iL, s) 64L~d~] -x - -  

(zo) 

(ii) 
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- -  ~ (8~.'d) -* [K+ (~..,. s) K7 ~ (~., s) - -  K+ (~.,. s) K71 (i~, s) - -  4i ]" (n) 

From the requirement that G+(a, s) be represented by an integral of Cauchy type, it 
follows that the contour F+ is located in the strip of regularity E below the real axis for 
e. Thus, in the planar case, the relations (9)-(11) furnish the exact solution of the prob- 
lem ( 1 ) - ( 4 ) .  

We now consider an example in which the external load acting on the surface of the plate 
obeys, for t > 0, the following harmonic law: 

q(x, t)= I f(x)e-iOt': t>0, x~0,; o >0,j (12) 

tOe t < 0. 

We assume now that the function f(x) satisfies conditions for the existence of the Fourier 
integral. Into Eq. (ii) we substitute the Qj(a, s) corresponding to the function (12); we 
then close the contour F+ in the upper or lower halfplane and, proceeding from the condition 

for decrease of exponential functions in the integrand, we then evaluate G+(a, s) by resi- 
dues. Next we handle the inner integrals in the solutions (9) and (i0), taking into account 
the position of the poles s o = -im, s I = -i<1(a), s 2 = i<2(a) on the imaginary axis, on the 
basis of Jordan's Lemma. 

For the outer integrals in the solutions (9) and (i0) we go to an integration contour 
F, which runs along the real axis, making a small semicircular detour around the point 

= -z2(-i00) in the upper half-plane and a similar detour around the point a = z (-i~) 
in the lower half-plane. The contour F, chosen in accordance with the limiting amplitude 
principle (see [3]), makes it possible to carry out a terms-by-term integration: 

2 

(z,  0 = e-~~ (x) + :Z Is (z, t),: ( 1 3 )  
j=l 

/0(X) = ~ y B0 (~Z) e-iaxda,,. /'/(X, t ) =  tyB,(oOe-4X'J(~ 
p P 

(pj (r ~ ) =  a + (--  i) TM %,x~ ((z),, %, = t/x,~. 

B0 (cz) = F. (a) Ks (a,  - -  io) + K,  (a, - -  ~o) K+ ~ (a, - -  io) N (r - -  ~o)~ 

B 1 ( ~ ) -  u , ' (a  ) N (a,; - -  tu 1 (a)) [2K+ (~z,, - -  to) [uv(a) - -  r 

B ~ ( a ) =  ~ 2x~ (a) [ ,  + pu~ (cz)] [o _t:. u~ (a) l 

N (a,. s) = ~ ~ (~.)K, (~n, ') 
n=O "-- ~ n' l ' 

oo 

F (ct) = ] (x) elCt:tdx,; K_  (r s) = ~ -  K_ (a, sI~ 
0 

ao = %(s),; ~. = ~l, ,n(s),  u~ (a~) + s' = O. 

(13) the first term determines the stationary part of the solution, the second and In Eq. 
third terms give the nonstationary contribution. 

In Eq. (12) we assume now that the external load is distributed according to the law 

/e in(x-~al),, x ~ [a 1, a..l,: 
f(x) = (0,; x ~  [al,, a,l,. ai,, a z > 0 .  

~(n+ a) e , 
(14) 

In Eq. (13) we can then put 

We evaluate 10(x) with the aid of residue theory. We single out the principal parts 
Ij(x, t) hyde forming the contour r close to the poles. Estimating the remainders by the 
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stationary phase method (see [6, 7]), we obtain the elevation ~ of the free surface of the 
liquid in different space-time domains. For example, for a2c~ z < t < (a~ + a2)c~ ~, on the 
free surface of the liquid (x < O) we have 

= O(Ixl-~), x < -c~t,~ 
; = ; - a  Jr 0 (I x I -v),: - -  c,t < x < - -  c l  (t  - -  a,eTz),~ 

; : ;--1 "q- ; ' 3  .3ff O(]XI--V),: - - ~ l ( t - - a l c 2 1 ) < ~ < - c  I ( t  - -  , , ~ ' l ) ,  
3 

; =  ~,, ; - i .+O( t -x ) , ;  - - c ~ ( t - - a ~ c Z ' ) <  x<<O. 

( 1 5 )  

The oscillations of the plate (x > 

5 

;=E ;~+ 
~=1 

4 

; = N  ;~+ 
~=~ 

Here 

O) for these times are described by analogous expressions: 

(16) O, O < x < - - a z +  c2t,~ 

0,: - - . a ,  + c , t  < x < - -  a x + c2t,: 

0,: - -  a~ + c2t < ' x  < a~,~ 

; = ~. . ; i  q- 0 (] = 0,. 2,. 3,, 6),, ax < x < az,~ 

= E ;i  + 0' (] = 3, 6, 7), a~ < x < c=t,~ 
$ 

= ~ q- ~ -b. 0 (I  x - -  a21 -~),  e2t < x < a~ + c~t, 

= ~r -t- O(lx - -  a~l "~ ),: a~ A- c~t < x < a~ + c~t~ 

; = O f l x  - -  a~t -~  ), x > a~ q- c2t~ 

r = d~  (z,,),~ z~ = z~ ( - -  ~m).,~ ~ ,  (z~) - o)~ = O~ m = t ,  2.  

$-J = 2c I K+ (zl) ~ ': ] ---- l~, 2,, 3,j ( 17 ) 

- i . ~  ( ~ )  e j  ( ~ )  - ~ ( ~ + ~ t )  

�9 ~(~x-o~t) 
- 

; J=  2o)c~[t+m,~(~.)] " ,: ]=6,~7~ 

y~ ~) = F5 (~) g, ("2' - -  ~) 
K'_ C%, - ~ )  z (z~,, ~,. - ~ j ,~  j = L z.~ 

N~(~) ~ F(=.) rq(~, -- ~) = K'  ~ (~" ~' - -  ~)~ 
~ = t  . -  ( % ,  - ~m) ' " 

a ~  = i ~ , . , ,  •  ( a ~ )  - -  ~)~ = 0,: ' 

0 = O(ixl,~.) + O(Ix--a~l-"),: I x .  a ~ [ ~  c~,: 

~O ( t - D ,  t ~ ~ ,  I x - -  a~l  ~<  cons t , :  

~/3<~, ~ <  ~,, I~1>0." 
Here K(a, -i~0), Kz(a, -i~), ~1(a), K2(a) are defined in Eqs. (6), X(~, ~, s) in Eq. (Ii), 
and Fj(~) in Eq. (14). 

An analysis of the solution (15)-(17) shows that each end of the interval [al, a 2] to 
which a perturbation of the pressure q(x, t) is applied radiates waves in both directions; 
these waves do not attenuate with distance and propagate with group velocity cz in the 
liquid and with velocity c 2 in the plate. The waves ~, ~ are generated by the edge 
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z = a l, while the waves r ~2 are generated at the point a2, to the right and to the left, 
respectively. Starting from the initial time instant the edge of the plate x = 0 is the 
source of the waves ~-3 in the liquid and ~3 in the plate with amplitude of the order 
exp(-~al), where ~ = inflre q~,n[, n ~ i. 

To the waves ~l, ~2 there correspond the waves 5a, 55, reflected from the plate boundary, 
and the waves 5-,, 5-2, refracted into the liquid. The contribution ~0 arises from the specific 
form of ghe external pressure function f(x). 

A comparative analysis of the dispersion functions ~ = ~i(~), shown in Fig. 1 for a 
layer of liquid covered by a plate (j = 2, then separately for the plate itself (j = 0), 
and, finally, for a layer of liquid with a free surface (j = I), shows that for low frequen- 
cies of the oscillations the plate changes the lengths of the surface waves insignificantly. 
For high frequencies (m >> ~*) the influence of the liquid on the length of the waves per- 
turbed under the plate is small. This is a consequence of the coincidence in the asymptotic 
behavior of the dispersion curves ~ = Kj(~) (j = O, 2) as ~ + ~. In the intermediate 
frequency range the dispersion of the gravitational-elastic waves studied is different from 
the limiting behavior in the j = 0 and j = 1 situations. For m = m* the curves intersect; 
the waves generated are all of the same length s = 2~/~,. 

Figure 2 reflects the behavior of the group velocities in the cases for cj = <~(~)3 , as 

indicated. It is evident that the plate slows the propagation of the long waves on the surface 
of the liquid. In Figs. 1 and 2 the values of the dimensionless parameters are: d = 6"i0 -s, 
p = 4.32"10 -2 , ~, = 41.69. 
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